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ABSTRACT

This report explores the algebraic and measure-theoretic
properties of the Euler parameter (quaternion) representation of
the rotation group. A family of probability densities on this
group is examined, and schemes for numerical integration and esti-
mation of satellite attitude are presented with numerical examples.
An effort has been made wherever possible to deal with nonlinear
problems directly rather than linearizing them. Several questions
for further research are raised regarding convolutions of densities
on the group, Brownian motion, and the statistics of spin and torque
vectors considered as stochastic variables.
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I. INTRODUCTION

Euler's Theorem states that the most general rotational
(or angular) displacement of a rigid body can be accomplished by a
single rotation through an angle, 0, about a line. Letting the
direction of this line be designated by a unit vector

(1u = u 2 ()

we have a numerical description of this rotational displacement
(henceforth, just "displacement"). It is not unique, however,
since both u and -u define the same line and 0 has not been re-
stricted to an interval of length 27. This representation is not
articularly economical, using four variables and one constraint,
ul = 1, to describe a mathematical object that has three degrees
of freedom.

There are many choices for parameterizing the rotation
group with three variables. One of the most common is the z-x-z
Euler angles, three plane rotations specified in "running coordi-
nates;" another is the roll-pitch-yaw system, or x-y-z Euler angles,
used in models of ship motion. These, too, have their drawbacks
stemming from the differences between the topology of this group

and that of R , the real 3-dimensional space of the three angles.
Such representations cannot be uniformly continuous - "small"
rotations are not always described by small parameter values. This
presents numerical difficulties when values of these parameters are
being estimated from observations of the orientation of a rigid
body. Furthermore, the propagation equations for rigid-body motion
are not as simple as one would like and suffer from the same topo-
logical singularities.

The elements of the direction cosine matrix,

C = [cijI i,j = 1,2,3, (2)

are nicely behaved in this sense, but they are nine numbers repre-
senting three degrees of freedom and hence subject to six con-
straints. They do, however, possess one useful property relating
to the structure of the rotations as a group under the operation
of "composition" or sequential rotation. Composition of two

-9-
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rotations is represented by the matrix product. The rotation

C3 = C2 C1  (3)

is the result of first rotating by C1 and then by C2. The direc-

tion cosine matrix is, of course, similarly useful for mapping
vectors in cartesian coordinates directly (for further discussion
see Appendix A).

The Euler parameters have all the advantages of the matrix
product representation of the group except this point mapping
property. They are uniformly continuous; that is, they do not have
any singularities to be contended with in their calculations or
statistics. Their primary disadvantages are the following:

1. They are obscure,

2. They are four parameters with one constraint, and

3. The representation is bivalued.

The constraint is a problem to be dealt with whenever
inexact calculations of Euler parameters arise: solutions to dif-
ferential equations, estimations based on linear approximations,
etc. The two representations of a given rotational displacement
differ only in sign, but this is a serious problem in numerically
comparing two rotations, and it must constantly be kept in mind
while developing numerical algorithms.

- 10 -
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2. DEFINITIONS AND FUNI)AMENTAL PROPERTIES

While the motivation may not be clear, it is convenient to
list here some fundamental terminology. In terms of the direction,
u, and magnitude, e, of a rotational displacement, the Euler param-
eters are given by

620=co (4)

Ui = i sin ,i = 1,2,3.

For simplicity, when B appears without a subscript it refers to
the column vector (%O, 61, B2, 83). The constraint is

82 = 1, (5)

which is obvious from Eq. 4. Thus, the 8 are bounded by 1, and

the bivalued correspondence comes from the entrance of the angle
as e/2 so that a 2n rotation added to 6 changes the sign of all
the 8..

The direction cosine matrix is given by

"02 +B1 -822- 3 2(81B2+8083) 2(8183-8082)

2 2 2 2
C(6) = 2(a182-8083) O2-812+ -+82 2(02a3+8081)

1 2 0 0 22 2 2 2

2(8183+8082) 2(8283-8081) 80 2-182 2+832

(6)

and it is clear that C(a) = C(-e). It is easy to show that
(81,82,83) is an eigenvector of C(8) (with eigenvalue 1). This is

the matrix having the successive transformation property described
by Eq. 3.

- 11 -
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A similar property holds for the following matrix:[0 1 8 2 831
81 83 82

S() = 82 -83 0 81 (7)

3 82 81 80

This matrix is introduced in Ref. 1 as having the property (estab-
lished in Ref. 2) that successive rotational displacements B and 8'
result in a rotational displacement 8" given by

8" = S(8')8 (8)

in the same sense that, as in Eq. 3,

C(8") = C(8') C(8). (9)

Directly, one can show that Eq. 8 expands to

S(8") = S(8') S(8), (10)

which contains Eq. 8 as its first column. Thus it is clear that
the Euler parameters provide a two-valued representation of the
rotation group as a group of linear transformations, one that
happens to be a subgroup of the rotation group in four dimensions
(as represented by 4 x 4 real orthogonal matrices of determinant
1). Not all orthogonal 4 x 4 matrices are of the form of Eq. 7.

The group identity is S(b0) = I4, where b = (1,0,0,0).
0 40 0

And for each 8, the inverse of S(e) is its transpose

S(S)T = S()

Ref. 1. H. S. Morton, Jr., J. L. Junkins, and J. N.
Blanton, "Analytic Solutions for Euler Parameters," Celestial
Mech. Vol. 10 (1974).

Ref. 2. E. T. Whittaker, A Treatise on the Analytic
Dynamics of Particles, 4th ed., Dover (1944).

- 12 -
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where
S= (0O, -61, -a2" -3) (11)

Consider next the matrix

[-1 0 0 0]
0 1 0 0

K= 0 1 0

0 0 1

4
and define, for any aceR

R(a) = KS()T K. (12)

Then

aI 0 aO  -( 3 2 - 23

Raa = 2 ot3 a 0 -a '113

s3 -2 1 s0

This matrix is also given in Ref. 1. It has a property similar to~that of S, Eq. 10: from

S01") = S(0') S(W) (14)

we have

R(W") = KS(6)r S0)TK

= R(15)

and from column one, a" = R(a)'.

By direct evaluation we can establish the very interesting,
even amazing, and useful property

R(a)T s() =S(a) R(a)T (16)

4
for any 6 and any a in R . (This also implies that R(a) and S()
commute.) Next let us observe that when a = a, this product takes
on the form

- 13 -
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Z(0) R( )Ts(a) =0 0] (17)

where C(a) is the direction cosine matrix defined in Eq. 6.

This definition is convenient to establish the law of com-
position stated in Eq. 9.

Z(B')E(B) = [R()S(6')] [R(B) s(8)]
=R') T  R(8)Ts(6')] S(a) (8

= R(6")TS (a, )  (19)

where 6" = S('), and Eq. 18 follows from Eq. 16, and Eq. 19

follows from Eq. 15 (for R) and Eq. 10 (for S).

The matrix

T(a,6) = R(a)S(a), (20)

4
where a and are unit vectors in R , has six degrees of freedom,

the same as the 4 x 4 orthogonal matrices. Indeed, we can show that

any orthogonal 4 x 4 matrix having determinant 1 is of this form.
We proceed as follows: the first column of such a matrix, X, is a

unit vector. Calling it C, we form

S()Tx

which then has the form

[j 0 0 0000
where C is orthogonal and has determinant 1. Thus S( )TX is of the
form of Eq. 17:

- 14 -
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S( )TX = E(n) for some n. (21)

Multiplying by S(C) and substituting from Eq. 17,

X = S(C)R(n) Ts(n). (22)

We have shown that S(C) and R(n) T commute, so

X = R(n)TS[S()nl, (23)

and letting n (as defined in Eq. 11) and a = S(C)n, the result
follows. In summary, we have shown that the four-dimensional real

4orthogonal unimodular (determinant +1) group, the rotations in R
modulo (14' -14) , is isomorphic to the direct product of the groups

of S and R matrices, modulo (14 -1 4).

-15-
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3. QUIATERNIONS AND OTHER REPRESENTATIONS OF
THE ROTATION GROUP

We have dealt up to this point with several representations

of the rotation group: the direction-cosine matrices, the S and R

matrix representations that we associated with the term "Euler

parameters," and others were mentioned. Some authors prefer to call
the Euler parameters quaternions, and indeed the representations are

isomorphic. Historically, the parameters were first developed by

Euler and Rodrigues and were published in 1776. They have variously

been called "the homogeneous parameters of Euler," "Euler's sym-

metric parameters," and "Euler-Rodrigues parameters." It was in

1843 that Hamilton introduced quaternions and the properties of this

division algebra, not subject to the length constraint.

Figure 1 illustrates the diversity of terminology in the

standard texts and technical literature that has evolved over the

last 200 years. Keep in mind that all of this addresses one pri-
mary mathematical object: the group of rotations in 3-space.

Representations linked by double arrows are identical or nearly
identical. Numbers identify references at the end of this report.

Arrows without numbers can mostly be found in Chapter 4 of Ref. 5.

Other direct transformations beyond those shown by the arrows cer-

tainly exist or can be derived, for example, the calculation of

z-x-z Euler angles from direction cosines. To make matters worse

or at least more confusing, there is no universal standard nota-

tion within individual representations. Euler angles, for example,

may be defined in many different ways.

By the term "principal axis form" is meant a specification

of the axis of a rotation and an angle. This can be a unit vector

and a scalar for the angle, or the product of the angle and the

unit vector. The Rodrigues parameters are not discussed in any of

the references, but they are essentially like the principal axis

form: the unit vector is multiplied by the tangent of one-half of

the rotation.

A representation of a group must model the group operation.

The ease with which this is done provides one distinction between

representations. The direction cosines and Euler parameters take

the form of real matrices and combine according to the ordinary

Ref. 3. G. Birkhoff and S. MacLane, A Survey of Modern
Algebra, MacMillan (1953).

Ref. 4. H. C. Corben and P. Stehle, Classical Mechanics,
2nd ed., Wiley (1950).

Ref. 5. H. Goldstein, Classical Mechanics, Addison-

Wesley (1950).

- 16 -
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Spinors
x-y-z

Euler angles

Pauli
spin

operators

Caley-Klein Ref. 4
parameters

=Quatern ions

EulerIparameters Ref. 1

Principal
Ref. I Rf. 1axis form

Euler angles

Direction
cosines Rodrigues

notation

Fig. 1 Representations of the group of rotations.
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matrix multiplication. The Pauli spin and Caley-Klein representa-
tions use complex matrices of lower order and are basically equiva-
lent in computational complexity to quaternions and Euler param-
eters. Principal axis and Rodrigues notation use vector cross and
dot products, and Euler angles require complicated trigonometric
calculations plus logical branching to avoid problems at singular-
ities.

- 18 -
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4. KINEMATICS AND DYNAMICS OF
ROTATIONAL MOTION

From Eq. 10 come the interesting properties of the Euler

parameters. Differentiating Eq. 4, we obtain

0 - 6/2

41 /2 1
= cos 8/2 + sin 6/2 . (24)

ev 2 /2 11

21

This form can be simplified a bit by noting that when 0 = 0 we have/0
W (25)

where wi =611i, which are the three components of the instantaneous

spin vector. Next we can differentiate Eq. 10 to obtain:

s;") = S(8')S(8) + s(w')S(6). (26)

Now let B be a constant, selected to be equal to 8" at some: time, to.

Then 8 = 0 and at t, 8" =  so that at t0 we have 8' - b., the iden-

tity. Thus the above form applies to ' and Eq. 26 becomes

S[A"(to)I = S(w/2)S[B"(to)] =1- S(M)S[B"(t0 )1. (27)

- 19 -
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The first colwvr.n of Eq. 27 becomes

(to (to) "(tO)0

which holds for any choice of to; thus at t:

h(t) = 1[((t)28(t),)

where w(t) = [ 1

i 2(t)

IW(t)

and the last three components are the instantaneous spin vector in
body-fixed coordinates. Thus

S[8(t)] 2[w(t)]S[8(t)] . (29)

The reason w appears in body-fixed coordinates is that the

spin motion follows the displacement 8. This is due to the choice
in Eq. 27 to hold 8 constant. Had we held 8' constant and let 
vary, the spin in inertial coordinates would appear.

Also we see that the form of Eq. 10 is that of the state

transition matrix:

0(t) = 0(t,t 0 )M(t0) (30)

in Ref. 1. Let us define, for any 0(t), a matrix

4(t,t 0) = S[8(t)lS[8(t0)IT , (31)

which is a rotational motion, the inverse of 8(t0) followed by 8(t).

Call its first column a(t), so that

0(tt 0 ) sfa(t)] (32)

is defined properly, and observe from

S[8(t)] = S[a(t)]S[B(t0)] (33)

- 20 -
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that Eq. 30 does indeed hold for this choice (Eq. 31) of 4(~

Differentiating Eq. 33 and applying Eq. 28 we obtain

!~SkWt)1S~t)] = k~o)~~ )

or

$(t,t 0 )S[(t 0)] = S1W(t)]$D(t,t 0)S[aCt 0)]

and thus

kt,t 0  = js[W(0)J (t,t0) ,(34)

as the differential equation for the transition matrix. All of the
preceding is kinematic and is true for any history of w(t).

We can use Eq. 17 in developing the dynamics of rigid body
motion. We need the derivative of C(B) with respect to time in
terms of the body-fixed spin components, w.

d T T-
=t Z( ) = R( ) S(s) + R(a) S(s) .(35)

Because R and S are linear in 6 (Z is quadratic),

i~)= R (B)TS(8) + R( a)TS(;) .(36)

The form of interest is

i~a)(B)T= R (;)TS(O)S(a)T R(8) + R(8)TS(;)S(8)T R(a)
(37)

= R(A) TR(O) + S(A)R (a) R(B) S(a)T

T T
= R(;) R(a) + S(8) S($) .(38)

We know S(;) from Eq. 29 and using Eq. 12 we find R()T. Evalua-
1

tion of these yields tS(w) for each term in Eq. 38, so

iC8)Z(a)T = S(ca) ,(39)

where w (0, wl, 2 W w3  in this notation.

-21-
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The fundamental physical law of rotation of rigid bodies
is

d
dt LI = Ti (40)

where T is the torque applied to the body and L is the angular
momentum. The subscript "i" reminds us that this is true in iner-
tial reference frames. We can define the inertia tensor

J = (rIT-rrT ) pdV (41)

body

in which dV is differential volume, p is density, I is the 3 x 3
identity, and

r= () (42)

is a point in the body. The matrix (r rTrI-rr ) is then

d xy x 2+z2 - ' (43)
-xz -yz x 2+y 2

which is valid only in the specific coordinate frame in which r is
defined. Thus a rotating body will have an inertia tensor that
may be time-varying in any coordinates other than body-fixed.

Angular momentum is conveniently separated as the product

L = Jw, (44)

and

L =Jw + J. (45)

As an alternative to writing J, we can transform Eq. 40 into body-
fixed coordinates using

Ji C(8)T Jb C(8) ; (46)

- 22 -
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W, = C( 8 )T Wb (47)

Ti = C(8)TT b " (48)

We must substitute for J and u in Eq. 45

a, = C(a)TJb C() + C(M)T Jb C(s) ; (49)

wj = C(a)T wb + C()T ' (50)

This produces, in place of Eq. 45

i = (8)TJD D + CO) T Jb C(a) C(6)T wb

+ C(a)T Jb C(s) ( )T Wb + C(a)T Jb Wb (51)

Equating Li to torque (Eq. 40) and substituting with Eq. 48

to involve body-fixed representation exclusively, we obtain

Li = Ti = C(8) r Tb (52)

and

c(s) Li = Tb  (53)

Multiplying Eq. 51 on the left by C(8) simplifies it somewhat and

and makes all occurrences of C be of the form CCT or the transpose
of this. From Eq. 39 we can extract the lower right 3 x 3 to leave
C in place of Z, and write (calling this submatrix of S(w) by the
same name),

T b = S(b) T bb + Jb S(Wb)wb + Jb S(Wb)T Wb

+ Jbb ' (54)

Note that wb is used in S because we have chosen in Eq. 46 through

Eq. 48 the transformation C(8) to be from inertial to body-fixed.

-23-
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Next, observe that Eq. 54 simplifies by skew-symmetry of
S( b) to the familiar

Jb b = S(Wb) JbWb + tb (55)

This is the body-fixed form of Eq. 40 with J terms in more tract-

able form.

Equations 55 and 28 or 29 form a set of differential equa-
tions for the motion of a rigid body. In this context we need to
indicate the dependence of T on the other variables, specifically
8, w, and time:

Tb = Tb (aWt) . (56)

Nowhere else in Eq. 55 does 8 appear, and thus a distinction can
be made between two classes of problems: those in which T depends
on 8 and those in which it does not. For numerical purposes, it is

u that is of interest, and it always depends on w except in trivial
problems.

Torques that do not depend on 8 are those due to on-board

rockets, momentum wheels, fluids, nonrigidity, or other mass-move-

ment effects. Those torques derived from interaction with external

masses or fields (drag, radiation pressure, magnetic, gravity gra-

dient) do depend on 8. The simplification in the former case al-
lows solution numerically to the differential equation (Eq. 34)
for the entire state transition matrix without knowledge of the ini-
tial attitude, 8(t0 ). This problem is a first-order differential

equation (nonlinear) in three variables; Eq. 34 for 8(t) is reduced
a quadrature.

There are important implications here for satellite atti-
tude determination in the sense that the transition matrix, 4, for
the 8 variables is itself an S-matrix (Eq. 32) and can be repre-
sented as S[a(t)] for some time-varying Euler parameters, a(t).
Then the matrix C[8(t 0)] can be propagated as well:

cGf(t)] = c[a(t)] c[(to)] (57)

and this inverted to

C[8(to)] = C[a(t)]T C[B(t)] (58)

- 24 -
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to translate back to t0 any future information about the satellite

attitude in the form of observation of directions in space. Most
attitude sensors (magnetometers, solar detectors, star cameras)
that are not rate sensors are of this type.

The implication of Eq. 58 specifically is this: in the

absence of B-dependent torques, a knowledge of the initial spin,
(t 0), reduces the attitude determination problem to:

1. A first-order differential equation in w only,

2. A quadrature to yield C[a(t)], and

3. A least-squares estimation of a(t0 ).

That is, the time dependence is removed from the estimation process;

it is as if all measurements are taken simultaneously at to. One

can even propagate the covariance effects of errors in the knouledge
of w back from the time of each measurement to derive appropriate
weights for the estimation of 8 at to .

Numerical solutions of Eqs. 28 and 56

-1 S W1

j-S( ) JW + J- r(8,ut) , (59)

may be improved considerably in computation time by the following
method in cases when w varies much more slowly than 8. In general
this will include only problems in the class having torques inde-
pendent of 8. In this case there is much to be gained by replacing
the approximation

=8 At (60)

by 1S(w)At
B(t+At) = e 8(t) (61)

where 8 and w denote values at time t, which we fix at the begin-
ning of the interval of length At. The matrix exponential serves
the role of the transition matrix when w is constant:

1

0(t+At,t) = e (62)

as in Eq. 30 and satisfies the differential equation (Eq. 34) when
the derivative is taken with respect to At holding t (and w)
constant.
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It is not necessary to use the series expansion for the matrix ex-
ponential or even to retain the exponential notation, for we may
refer back to the fundamental definitions (Eqs. 4 and 7) and write

S(t+At,t) = S(cos , u sin 2 , (63)

where u is the unit vector as given in Eq. 4 with an appropriately
chosen sign. Appendix B shows a different approach to the develop-
ment of Eqs. 62 and 63.

A Runge-Kutta fourth-order algorithm based on Eq. 63 was
developed by straightforward replacement of all 8(t + At) = 6(t) +

8(t)At or similar steps by the rotational equivalent. Some atten-
tion is also required, however, to the order of matrix products,
since these are no longer commutative operations. Let h be the
time step and define

cos 2 t

0(WAt) = S sin _____ . (64)

Thus O(w,At) represents the rotation generated over an interval At
by the constant spin vector, w. The Runge-Kutta algorithm is as
follows:

= O[W(ti), h/2] (65)

k= L T[8(t), W(ti), ti] (66)

' = X1 B(ti) (67)

w' = k + W(t ) (68)

X2 + O(W', h/2) (69)

k =h T(8', W', t + h/2) (70)2 2

8* = '2 8(ti) (71)

*= k2 + W(ti)  (72)
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A3 = O(w*, h) (73)

k3 = h T(6*, W*, ti + h/2) (74)

= A3 1(ti (75)

+ = k 3 + W(ti (76)
h + +

k = h T(6
+

, w+
, t i + h) (77)

4 2

6(t i+) = O(i+ , h/6) N*2 h/3) o[w(ti),h!61 6(t i)

(78)

w(t i+) = w(t.) + (kI + 2k 2 + k3 + k (79)

When the torque, T, does not depend on 6, it is possible to

to modify this algorithm to integrate ¢(t,t 0 ) from the differential

equation (Eq. 34) and the initial condition D(t0,t 0 ) = 14, the 4 x 4

identity matrix. The intermediate calculations of 6 would be un-

necessary and D(ti+l1t O ) would be produced in Eq. 78 by replacing

6(t i ) by P(ti, to0).

As a numerical example, the torque-free motion of a body

whose inertia moments were Jl1 = 43.1, J22 = 40.6, and J33 = 44.3

was integrated from an initial 6(t0 ) = (1, 0, 0, 0), and w(t 0 ) = 10

rpm, offset by 0.1 radian (about 60) from the z-axis in the +x

direction.

Figure 2 shows the spin history for 500 sec, about 83 revo-

lutions. Precession has carried the spin axis through four trips

around the z-axis. Using the Runge-Kutta scheme presented here,
one can select a step size h based on this lower rate of w vari-
ation rather than the high rate of a periodicity. Variations of B

are shown over 50 sec in Fig. 3. Table 1 shows roughly the order

of magnitude of accumulated errors in 6 and in w at the end of 500
sec. These values were obtained by comparison of results with values

obtained by integrating at 2 sec steps.
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Fig. 2 Spin rate history, 500 sec.
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Legend
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Fig. 3 Orientation history.
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Table I

Errors in w and 0 from numerical sources.

Step size (sec)

5 10 20

AW 0.0001 0.001 0.015

As0.008 0.02 0.10

The errors in 8 fall within the range from-to-
2w 4

where they are expected to be if they are due to errors in w. Thus,
one would conclude in this case that the e integration is "more
linear" than the w integration. The opposite would be true in the
case of large but constant (in body coordinates) torques.
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5. A PROBABILITY FUNCTION ON THE GROUP

The size or "amount" of rotation indicated by a vector, B
of Euler parameters can be measured directly by calculating the
angle 6 in the definition given by Eq. 4. A comparison of the
"difference" between two orientations, V' and B, can be made by
using the group operation and inverse as a means of "subtraction."
On writing

a," S($,)T 8,(80)

we could calculate the angle e" that corresponds to B"; however,
there are equivalent measures of the amount of rotation that are
simpler to calculate. For example, we can define a metric on the
rotation group as follows:

P(,)= Isin e"/2; C1

where e" is as defined above. The reason this is simpler is that

it eliminates trigonometric calculations by simplifying to

POXB) = I-(T)2(82)

This can be seen by observing that the first element of Eq. 80,

iaa'whih is also cos e Thus

(Cos 6 2) 2= (88' ) 2, (83)

and Eq. 82 follows directly. Note that

P(8,-a) =0 , (84)

which means that p is a metric on the rotation group and not on the

unit sphere in R 4because it does indeed identify antipodal points.
We~ have not shown that p satisfies the definition of a metric, in
particular the triangle inequality. This calculation is tedious
but not difficult.

An important observation is the invariance of p under rota-

t i o n , t ) B , S O W ]8' = P O X, 8 ) ,( 8 5 )
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which follows directly from the invariance of a TV under such an
operation. It is also interesting to note that the function p can
be written as

"--1-

and extended to all of R 4 , where the projection back to the unit
sphere is incorporated in p directly. Thus, one should beware of
numerical errors in the length of P when applying c in the form
Eq. 82, which is not corrected for length.

This metric notion of the amount of rotation leads directly
to the concept of the scalar magnitude of a rotation defined as

11611 - p(B,b0 ) , (86)

so that (lboll = 0, II( 1 for any 4 and, from Eqs. 81 and 4,

111 -JJ sin 6/2) (87)

We can speak of a differential rotation

dQ
6 cos27 dO (88)

u i sin-- , i = 1,2,3

as in Eq. 4, which has a differential scalar magnitude although
4

it is a unit vector in R . The first component is large and is
not d0 in the usual linear sense; for this reason we choose the

Greek 6 rather than d, emphasizing this distinction.
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The calculus of these differential rotations and of distri-
butions or functions defined on the rotation group can be extracted
from the more general and abstract methods presented in Refs. 6
through 10; however, in an effort to gain, clarity and insight, we
choose to develop methods in the specific context not only of the

rotation group but of the particular representations of it that are
most familiar, such as Euler angles, Euler parameters, etc.

Let us denote by G the rotations as an abstract group, inde-
pendent of any representation by parameters. Suppose f is a real-
valued function defined on G. We will find it useful to be able to
integrate f over all or part of G, such as one integrates probabil-
ity densities to obtain probabilities. But the symbols

J f(g)dg (89)

G

are not well defined without some definition of what is meant by
dg.

We need a "measure" -n G, and the symmetry or uniformity of
G ought to imply that for any fixed rotation gocG,

Jf(gg0 )dg = f(g)dg (90)

'IG G

that is, that this measure is uniform over G. Take, now, as an
example a representation of G, the z-x-z Euler angles, which we

denote by (#,8,i). Write g as a function of these so that f(g) =

f(0,8,*) and

f f(g)dg f( ,6,,)I(.,8,,)d~dedp . (91)

G 0,0,0

V

Ref. 6. I. M. Gel'fand and Z. Ya. Sapiro, "Representations
of the Group of Rotations in Three-Dimensional Space and Their Ap-
plications," AMS Trans., Series 2, Vol. 2 (1956).

Ref. 7. F. D. Murnaghan, The Theory of Group Representa-
tions, Dover (1963) (alco pub. by Johns Hopkins Press, 1938).

Ref. 8. U. Grenander, Probabilities on Algebraic Struc-

tures, Wiley (3963).
Ref. 9. C. Chevalley, Theory of Lie Groups, Vol. I,

Princeton (1946).
Ref. 10. H. Flanders, Differential Forms, Academic Press

(1968).
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If we can find a "weight function," I, with the property, Eq. 90,
and normalize it so that

f22dg = 8 , (92)

G

where

dg = I(0,6,t)doded , (93)

then Eqs. 91 and 93 can become a definition of dg that makes Eq. 89

well defined. The choice of 87 2 will be clear later.

Intuitively, we see that for the differential rotations
(do,dO,d#) to be orthogonal, we must have e = -, for which do is

about z, d6 about x, and di about y. The alignment of the 0 and
angles when e is small means that the I(4,6,i) value ought to be
small too. As it turns out, I(0,6,) = sin 8 works. In this ex-
ample, the key feature of tnis weighting function is that it repre-
sents the nonorthogonality of the three differential rotations.
The invariant (under rotation) quantities of interest are the "dif-
ferential volume," represented by differential rotations in three
degrees of freedom, and the "relative orthogonality" of these axes
or "angles" between them. The function I(€,Oi) = sin 8 represents
the volume of a parallelepiped whose edges are unit vectors in the
directions of these three Euler rotations as viewed in a fixed (not
the running z-x-z) coordinate frame. It corrects the quantity
dodgd to the differential volume, dg, that is needed as an invari-
ant under rotation so that the integral satisfies Eq. 90.

We can do the same thing using the Euler parameters. Since
there are four of these and only three degrees of freedom in the
rotation group, the differential volume will be a "three-form" in

4
the exterior algebra over R4 , an elaborate way of saying that the
previous

dg - I(0,8,i)d~ded*

will be replaced by

dg = I0()dld8 2d83 - 1()d0d82d83

+ 12 (8)d 0d 1d8 3 - 13(8)d 0dB1d82
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and 1(8) (a vector) is to be chosen to make dg an invariant under
rotations. For notational simplicity Eq. 94 will be written

dg = I(8) T *d8 , (95)

where *do denotes a vector (* is the Hodge star operator, Ref. 10),

-d8ld82d83 -

-do0d8 2d83
*d8 = d00 dldo3  (96)

-d80 d 81d82

Next, from Eq. 88 we see that at B = b0 = (1,0,0,0) we ought

to have dg = 8 dld82d83 . Thus we conclude we want I(1,0,0,0) =

(8,0,0,0). The requirement of invariance is, in our current notation,

I(8 1 )T *do' = I(a) T *d8 (97)

for any choice of 8 and 8'. Fortunately, we know how Euler param-

eters are related; there exists an a such that

8' = S(a)a (98)

From this it follows that, considering a a constant,

do' = S(a)dB (99)

and

*do' = S(a)*dB , (100)

which can be argued from the framework of exterior algebra in which

"*" and "d" are linear operators, or by accepting Eq. 99 on the
basis of "d" being linear and calculating Eq. 100 from the defini-
tion of *do.

In any event, multiplying Eq. 100 on the left by the 1 x 4

matrix I()

1 (6I)T *do' = I(8 I)T S(a) *d8 , (101)

and thus

I(8)T =I0)
T S(a) (102)
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I(W') = S() I(s) , (103)

which holds for any 8, specifically 8 = (1,0,0,0). So we obtain by
substituting this 8, and 8' = a,

l(a) = 8a (104)

Thus the invariant differential volume element is

dg = 8(00 d6Id82 d83 - 1d 0 dB2 d83

+ B2 d8 0 d 1 dB3 - 83 d8 0 dd8 2 ) (105)

This differential form is defined on the surface of the unit ball
4

in R , so we can apply Stokes' Theorem and actually evaluate the
integral to obtain

I2Jdg =32 lfd80 dO 1da9 d83  16n1 (106)

101=1 181 <1

This integral is twice as large as Eq. 92 because of the bivalued
representation of the rotation group; that is

dg=2Idg = 872 (107)

G 181=1

as in Eq. 92. Note that the topological and geometric properties
result in expressions symmetric in the four components of 8 (Eqs.
105 and 82); the uniqueness of 80 as in Eq. 4 appears in expres-

sions relating to the group structure and in particular the group
identity.

Having thus demonstrated an invariant volume element, dg,
we can think about probability densities on G, those functions, f,
normalized to have their integral Eq. 89 over the group be unity.
For example, the constant

f(g) = 2

87r

is one such and represents the "equal likelihood" density function,
or the "uniform density function." The finite volume of the group
and the existence of a uniform density function do not parallel the
structure of the real line and the theory of probability distribu-
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tions of real variables. Another major distinction is that the
properties of linear spaces are enjoyed by the real line and not by
the rotation group. Both, however, have a group structure that al-
lows the fundamental operation of convolution to be defined. A
theory of Fourier transforms can be developed for G as it can for
the real line (Refs. 7 and 8).

We are going to investigate an analog of the multivariate
normal density on Euclidean space, the probability density function

- _IJT

PD = k(D) e 2 (108)

where D is a real 4 x 4 symmetric matrix, and k(D) is a normaliza-
tion constant defined by

1 - I aD a
fpD(a)dg = 1 k(D) e dg (109)

1= f8D 2_GI B I l I

There are two primary motivations for dealing with this choice:
first, given two such functions, the product is another such after
normalization and admits a maximum-likelihood estimation analogous
to that for the multivariate normal probability functions; and
second, densities of this form represent well the information ob-
tained from single measurements of commonly used attitude determin-
ation instruments on spacecraft.

A number of facts are immediately obvious. The choice of D
to represent the density function is not unique. Let D' = D + XI,
X a constant, then

8TD'8- X+ aD8 , (110)

and 1T
-X/2 - 2 TD8

pD,()= k(D') e e i (ill)

Therefore, pD () and pD'() differ at most by a constant, but by

Eq. 109 they must be equal:

pD(B) = pD,(8)

and /2(112)
k(D') = k(D) eX/2
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We also can observe that the uniform distribution is a
member of this class of functions. Letting D =XI, the dependence
on 8 is eliminated, for example, with X. = 1:

1i6T IS1
-2 2(13

P1 (8)k(I) e ~ k(I) e(13

and thus

e1/2

87t 2(14

What we have is a one-to-one correspondence between these density
functions and the equivalence classes of real symmetric 4 x 4
matrices defined by the equivalence relation that two matrices are
equivalent if their difference is a constant times the identity
matrix. This is the reason we have not mentioned, for example,
positive definiteness; it is not a class property, although each
class clearly has a positive definite representative.

We cannot tie estimation to the "expectation" of 8 (nor
even define it) because G is not a linear space, so we must appeal
to maximum likelihood for an estimation of 6. If we were dealing
with a probability over the full four-dimensional space, we could
solve for the peak value of p D (the most likely 8) by differenti-
ating with respect to I8 and setting this equal to (0,0,0,0):

d pD(a) _.L 8 T T
D8 -k(D) e 2 (8 D) .(115)

But this leads only to 8 D = 0 and a = 0, which is not very useful.
Incorporating the constraint 18i = 1, however, we can find the de-
sired so] ktion by determining points for which the gradient ofpD

is parallel to 8. From among these we select the one for whichp

is largest. When

= c
d8 a (116)

with c constant, the directional derivatives perpendicular to 8are
0, these being the only directions that preserve 1.
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This equation is written, from Eqs. 115 and 116, as

- pD(a) (BTD) = caT  (117)

Solutions of this equation are the eigenvectors of D, for which
there are four real eigenvalues, X,,x 2,X 3 X Let a set of

orthogonal eigenvectors corresponding to these be cl,...,a 4 and

suppose the Xi are denumerated in ascending order. We now have

- 1x
2i

pD(a ) k(D) e , (118)

so PD is largest for the smallest of the Xi, namely X., although a1

may not be unique, as is the case for pit for example.

Another important property is that a probability density

function may be "rotated." If we form

- IlaT S~)T D~

pD[S(a)8] = k(D) e 2 (119)

we obtain pD,(a), where

Do = S(a) DS(a) (120)

and by the invariance of the normalizing integral,

k(D') = k(D) (121)

That D' is symmetric is obvious; it clearly has the same eigen-
T

values as D and eigenvectors S(a) Ti corresponding to them. For

example, setting a = aI makes b0 [b0 =(1,0,0,0)) the most likely

orientation.

As was previously mentioned, the product of pD and pD' is a

function, pD"' of the same type:

- 1 -6T (D+D')O . (122)

pD, (8) p D(B k(D') k(D) e2

On writing

D" - D+D' (123)

- 39 -



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL MARYLAND

we find pD" is normalized according to

= k(D+D')

PD" k(D) k(D') PD '(1) PD (a)  (124)

There is a similarity here to the process of combining two linear

least-squares estimates based on independent sets of observations.
These "D" matrices play the role of the "information matrix" or the
inverse of the "error covariance estimate." It is the differences

rather than the similarities that are of interest. As we have
shown, the "zero information" matrix is not only the zero matrix
but an€ constant times the identity. Addition of any of these "zero
information" matrices leaves the corresponding density function,

PD' unchanged (after normalizing).

In the case of very good information about the most likely
orientation, or small error covariances, these probability density
functions ought to behave like the multivariate normal. To see that
this is the case, let us look at a D matrix whose density function,

PD' is concentrated in the vicinity of b0 , the group identity.

First, b0 being a eigenvector implies

Db0 = b 0 = 0 , (125)
0

so, by symmetry of D,

X0 0 0

D =  ' (126)

where X is a symmetric 3 x 3 matrix. We want the eigenvalues of X
to be large in comparison to X; as with all such D matrices, we are
free at this point to subtract X1 from D, the effect being absorbed
in the normalization function, k(D'), where D' = D-AI. For small
variations around b_, the three degrees of freedom reside in the
last three components of 6B, as we have seen in Eqs. 4 or 88. Thus

0 10 0 0

D' = D-AI = [ I X (127)
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does indeed look like a multivariate normal density in the three
independent differential rotations about the x, y, and z axes under
the correspondence

-1

X' = Y- -  (128)
4'

where Y = E(OG), e = (exy,0 z), and E is the expectation operator.

Noting that the correspondence in Eq. 128 arises from the
a oapproximation sin for small 0 in the definition of BI' 62'

0
and 539 and that 0 involves cos - , it is natural to ask whether

D-  might be obtainable as E( T). Certainly the matrix E(5 T )
exists and is symmetric for any probability density, pD* For the

uniform density function Eq. 113, it is not difficult to evaluate

E(66T),

i f 1/40

d p (6) 4
T dg1 1/4 0/4 (129)f = 1  1/4

where dg is given in Eq. 105. This gives D = 41 and shows that in
this case

D-I = E(B T ) (130)

for an appropriately selected D from the class (of scalar multiples
of I) corresponding to the uniform density function. It is not
difficult to show that each class D+XI,X real , where D is
symmetric, has one choice of A that makes

Trace (D+XI)- 1 = 1 . (131)
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The trace of (D+AI)-  is the sum of the reciprocals of the eigen-
values of D+XI. For large X these reciprocals are all positive,
but small; let pi be the eigenvalues of D and let X decrease toward

the largest quantities -pi, and the trace of (D+AI)- will increase,

reaching 1 at some value of A.

The significance of this is in the fact that E(66) must
have

Trace E( T ) = 1 (132)

because 8Ta = 1. Is it the case, we may ask, that given any real
symmetric (4 x 4) matrix D

k(D) T D2 -
E(8 ) = 2 T e dg = (D+XI) ? (133)

Here X would be that number for which Eq. 131 is satisfied. No
attempt here will be made to resolve this speculation.

Consider the diagonalization of a real symmetric (4 x 4)
matrix D by an orthogonal matrix of determinant 1:

D = T(a,y)T AT(oi,y) (134)

where T(c,B) = R(a)S( ) as in Eq. 20, and

0 0 0 0

0 AI  0 0

1 (135)
0 0 A 0

2
0 0 0 3-- 3-

This clearly generalizes Eqs. 119 and 120 to two types of "rota-
tions" that arise because of the noncommutativity of composition
of rotations. The same argument used to establish Eq. 121 shows
that

k(D) = k(A) 
(136)
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The density function Eq. 108 can thus be reduced by a change of

variable that diagonalizes the quadratic form, 8 TD8, to the function

- L 6TA6

PA(6) = k(A) e 2 (137)

where A is obtained from D by the change of variables

6 = R(a) S(y)6 . (138)

To accomplish this reduction to standard form Eq. 137, we required
not one but two transformations of the stochastic variable, 6, in
defining the new stochastic variable, 8. By commutativity of R and
S matrices (Eq. 16) and relationship, Eq. 15, this transformation
can also be written

S(6) = S(y) S(8) S(a) , (139)

where the nature of a as a "precedent" rotation and y as a "subse-
quent" rotation is more clearly shown.
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6. ESTIMATION OF ORIENTATION

The fundamental result of the previous section that we will
draw on is the means of calculating the most likely orientation,
6*, from a probability density function, pD(M. It was shown that

to find B* from D it was necessary to look for the eigenvector cor-
responding to the smallest eigenvalue. This answer may not be

unique; two eigenvalues may be equal or nearly so. The other fea-
ture of the family of functions chosen is that the product of two
is also in the same class and the matrix resulting from such an op-
eration is the sum of the two matrices for the two factors (Eq. 123).

So far we have seen only one specific example of a D matrix
interpreted physically: D = 41, which represents "no information"
and generates the uniform probability density. Figures 4 and 5
show two examples of the shape of the function

1 lT

f) = e

plotted for the two-dimensional analog of the Euler parameters.
The inner curve is the unit circle, I8I = 1, and the outer curve
has its radius increased to 1 + f(a). In Fig. 4, the eigenvectors
of D are aligned with the coordinate axes; in Fig. 5, they have
been rotated as indicated. Following the discussion of the matrix
given in Eq. 126, we see that if

il 0 0 0

0 dI  0 0

dl 0d2(140)D = 0 0 d 2  0 (10

0 0 0 d 3

where dl,d2 d3 denote any positive real values very much larger

than 1, the function pD(0) is a maximum at * (1,0,0,0). A ma-

trix D' having an equally well defined eigenvector at an arbitrary
point 0' is given by

D'= S(') DS(a')T  , (141)
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"IN f(~

Fig. 4 Showing the shape of f (j)for j3on the unit circle.

f(j3) =e-/ DD[ 3j
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since S(O') T carries 8' into (1,0,0,0). There is another choice at
hand that has this same eigenvector:

T
D" = R(') DR(8') . (142)

The distinction between D' and D" when 8' # (1 0 0 0) is that of

the order in which a' and the stochastic variable are applied as
was discussed at the end of the previous section. An easy way to

visualize this is to lee 8' become a function of time with 8'(0) =

(1 0 0 0). Now

S(0')
T D' S(8')

equals D and is constant in time, whereas

D.' (t) = S( 8 ')T D"S(8') = (8 '
T D Z(B') (143)

where EC8') is defined in Eq. 17 and D.'(t) is clearly the repre-

sentation of the constant matrix D in a coordinate frame that ro-
tates according to 8'(t); by this we mean that the choice of the
three coordinate axes in Eqs. 1 and 4 is a rotating frame, as is

clear from Eq. 17. Note then that the distinction between Eqs. 141
and 142 must disappear in the special case where d = d = d

1 2 3'

Sys Next, consider the case of a satellite attitude measuring

system such as a vector magnetometer or solar attitude deter'.or

that provides at some instant of time the information that a body-
fixed unit vector, u, is aligned with an inertial unit vector, U.

No information is provided about the orientation of the spacecraft

around that axis. Given only these data, all orientations around
this axis are equally likely. Starting with any a such that

C()u= 0 (144)

let

20d 0 0

D' = E ()T 0 0 d 0 Z(a) (145)

0 0 0 2

where again d >> I (depending on the precision of the measuring
instrument). The probability density function pD'(8 ) now takes

on its maximum at 8 = (1,0,0,0), but this point is not unique.
Since any 8 of the form
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(c':=)(146)

u sin

is carried by Z(c) into

cos

10
s in

which is also an eigenvector of the diagonal matrix in Eq. 145, it
follows that 0' is an eigenvector of D' having an eigenvalue of 2.
Such a set of 8' describes all possible orientations obtained by
rotations about the vector u. Since the vector u is fixed in the
body, we next wish to precede such rotations by one carrying the
inertial vector U into u; call this vector 6.

u = C(6) U (147)

Writing

D = R(6) D'R(6)T (148)

we can show that 6 is an eigenvector of D. qince 6 is carried by

R(6) T into (1,0,0,0), which we have shown to 6, an eigenvector of
D' with eigenvalue 2 (the smaller of 2 and d), 6 is an eigenvector
of D and p (0) takes on an extremum (maximum) at S. Each of the

other equally likely orientations arises from a 6' such that

8' = R(S)T6' . (149)

From this equation, we find

6' - S(0')6 , (150)

which is interpreted as 6' being the rotation 6 followed by the ro-
tation 8' (Eq. 146).
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Next we shall give a numerical example to show how two such
observations may be combined by the rule of adding D-matrices (mul-
tiplying density functions) to yield a D-matrix whose eigenvector
having the smallest eigenvalue provides a uinque solution of the
satellite attitude. Consider first the simplest case in which the
body-fixed and inertial frames happen to be aligned; the Euler
parameters describing this relationship are (1,0,0,0), the identity.
Suppose we have two observations, one of the body z-axis and one of
the body x-axis. To describe the first by a D-matrix, Di, we need

to find a and 6 according to Eqs. 144 and 147. In this case we may
choose (neither choice is unique) a = 6 = (1,0,0,0) because both u
and U are the respective z-axis unit vectors, (0,0,1), of their co-
ordinate frames. We obtain

2 0 0 0

0 d 0 0

DI 0 0 d 0 (151)

L0 0 0 2_

and will reserve the choice of d.

Next, the second observation is defined by u = (1,0,0) and
U = (1,0,0), and we assume this is made simultaneously with the
first. Here again, 6 may be selected as (1,0,0,0). The choice of
a must provide the point transformation (see Appendix A) of (1,0,0)
into (0,0,1), so let

C(a) = 1 ) (152)

1 0 0

which we obtain from

/cos 450

a= sin 45* (153)

in Eq. 6. This yields
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2 0 0 0I
0 2 0 0

D2 = 0 d 0 (154)

.0 0 0 d

Now we can write the matrix of combined information:

4 0 0 01
d+2 0 0

D = D I + D 2 = 0,d (155)

1 20 0 d+2

which, for large d has a unique eigenvector, (1,0,0,0), correspond-
ing to its smallest eigenvalue (4).

As a second example, we let the orientation of the space-
craft be (all calculations carried 15 digits although we show
fewer here) (0. 98255

0.04971I 0. 09942
0. 14913)

and

/0.93575 0.30293 -0.1804

C(1) 0.28316 0.95058 0.12733 .

0.21019 -0.06803 0.97529/

We pick two vectors in inertial coordinates as observations

/-0.26726

Ul = -0.53452

0.80178 /

and

0. 96309 I

0.12039/ 5
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These are mapped, respectively, into

(-0.55677

u' (:-0.33033
0 .76216

and

0.0654)

u2 0.48626

(0.33622)

by C(8*) as in Eq. 147. Now treating these as observations with
d = 10000, we reconstruct 0* from the sum of the two D-matrices
(Eq. 148):

319.63 - 712.53 -1213.32 -1046.39

- 712.53 8194.63 -1929.06 3249.87
Di -1213.32 -1929.06 7917.01 3360.56'

D Q1046.39 3249.87 3360.56 3572.71)

330.32 - 112.05 -1133.35 -1370.29

I 112.05 1905.54 3311.83 -2104.12
D2 -(1133.35 3311.83 8501.14 697.31))

(-1370.29 -2104.12 697.31 9266.99)

and

649.95 - 824.59 -2346.67 -2416.69

824.59 10100.17 1382.76 1154.74

DlD (- 2346.67 1382.76 16418.16 4057.88)

(416.69 1145.74 4057.88 12839.70)

The eigenvalues and eigenvectors were determined by the Jacobi
method and returned 8* correct to at least ten digits.

When observations are not taken simultaneously, but the
motion of the satellite is known over the interval between observa-
tions, estimation of the orientation is still possible. From
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knowledge of w(t) in body-fixed coordinates we can produce the

transition matrix

(t 2 ,t 1 ) = S(02 ) S(a1)T (156)

as in Eq. 31 without actually knowing aI or 829 which represent the

spacecraft orientation at t1 and t2 when the two observations are

taken. The estimate of 81 can be based on

D = 4T D21 + DI , (157)

where D1 represents the observation'at tl, and D2 that at t2.

The extension of this method to the case in which w is
treated as a stochastic variable is not addressed here. We can
speculate that the convolution of two density functions of the form
Eq. 108 is another of this type, and further that if w assumes a
normal density that a differential equation for propagation of D-
matrices would represent the "diffusion" of these probability den-
sities and a sort of rotational Brownian motion as discussed in
Ref. 8 and in other references as far back as 1928.
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APPENDIX A

DEFINITION OF ROTATION MATRICES

The confusion that stems from the wide variety of defini-
tions of coordinate frames, Eulerian angles, and rotation matrices

cannot be laid aside easily. Reference 5, for example, very care-
fully discusses the freedom of choice of clockwise versus counter-
clockwise rotations as positive rotations, the concept of "running

coordinates," and the order of matrix multiplication. Consistent
with this, Goldstein writes as a rotation about z in a right-handed
system with counterclockwise rotations being positive (see Fig. A-l)

Cos ~ sin ~ 0

D= -sin cos 0

0 0 1

He completely neglects to describe this as an "alias" or "coordinate
transformation," and the casual reader might be surprised that for
0 = +90* the matrix D carries (1,0,0) into (0,-1,0). The matrix
C(O) in Eq. 6 is similarly defined as a coordinate transformation.

Reference 3 provides a nice discussion of "alias" versus
"alibi." In other works, notably those using tensor notation, the
terms "covariant" and "contravariant" appear. The choice of the
"alias" or "coordinate transformation" or "contravariant" form
above is necessary if the matrix products are to be taken from
right to left in "running coordinates." To remember this, consider
the succession of two rotations, the first about z as above, and
the second about the x-axis after it has been repositioned accord-
ing to the first rotation. We choose to write the second matrix
in "running coordinates;" that is, the axis of x-rotation is to be
(1,0,0):

1 0 0

C 0 cos 6 sin 6

0 -sin e cos /
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Fig. A-i The counterclockwise rotation for positive ~
about .he 3-axis, as in Ref. 5.

3,3

Fig. A-2 The second (subsequent) rotation, again counter-
clockwise, about the 1' axis, as in Ref. 5.
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See Fig. A-2 for a description of this relative to the first rota-
tion. Now in the "alias" interpretation we fix a point whose coor-
dinates are initially (cos 0, sin 0, 0). This point will be the
final x-axis after repositioning the coordinate frame. Indeed,
applying D then C yields (1 0 0).

Using the "point transformation" or "alibi" method, we would
piece together this same rotation by first applying a rotation to
map

(1) s n and 0 0

This matrix is D T . The subsequent rotation must now map

/Cos € ( Cos 0 (0 sin 0 sin

sin sin and 0 ' -sin e cos

0 0 1 cos e

T T T
and is clearly not C . It is in fact D C D, so the product is

T T T =T T
(DCTD)D = Dc

which is reasonably enough the transpose of the alias representa-
tion CD. Authors who prefer the alias representation probably feel
that it is more natural because the matrices in running coordinates
(which are easiest to write) are applied in the same order as are
the successive rotations. Authors who prefer the alibi probably
feel more comfortable watching a point rotate according to the right-
hand rule, e.g., (l,0,O)--(cos ¢, sin €, 0) for "positive" rotation
about z. The most common mistake is in selecting the alibi repre-

sentation and incorrectly composing two rotations as C D (Ref. 6).

-55



THE JOHNS HOPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL MARYLAND

APPENDIX B

DEVEIOPMENT OF es( " for w CONSTANT

-0 -W1 -W2 -3
W1  2 3

1 0 3 - 2

S(W) = (B.1)

S2 - W3 0

L 3 2 -1 0

by definition, which it is convenient to partition, letting

g W 2 G -W 3 0 W 1 (B.2)

W W2 -W 1 0

into

Murnaghan (Ref. 7) points out that G satisfies

G3 = - jgj 2 G (B.4)
G

and that therfore e is expressible as a quadratic polynomial in
G. It is natural to expect the same of S(w) and thus of S(w)t.
We observe that

Gg = 0 (B.5)

0
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and find then that

2 0-- - -
S(W) = T (B.6)

0 -ggT

and i [0 8

S(W) 0 _9

T T2
0 I gg _1
------ (B.7)

2g-jg21g 3_gT
G~ ~ g-gGg9 G

2 TOn removing G g and gg G, which are zero by Eq. B.5, and substitut-
3

ing for G

3 _0 2 g2~S(W) = - =- 1gI S(w) . (B.8)

-Ig'12g 1 -Igg2

- IG

Thus, the evaluation of eS (W)t as a series

e S ( )t = 14 + S(w)t + S(W)2t + S(W)3t 3  (B.9)
4 !3! **, (B9

gives

e S (W )t = 14 + S(W) t - jg~3[ + 5!,

2! 4! 6!

14 + S sinigIt + -(-coslglt)

4 Igl 2  j j(4+S(w)2)% +sngt- 2 cig.

(B.1o)
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The constant term is

jg2F IG2 (B.11)

From the equality

S(t) = S(8(t)] bos b 0  0 (B.12)

and1 
( t

S(8(t)I = e2

for constant w and 0(0) bol we see as expected

0(t) + 1T7 sin IgIt/2 cosjgjt/2
011 g

o 3) 0

0 1
U 1  0

=sinlgjt/2 + coslgjtf2. (B.13)
U2  0

U3  0
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